I numeri naturali e la successione di Fibonacci
Cenni storici
La successione di Fibonacci è una sequenza di numeri interi naturali definibile assegnando i valori dei due primi termini, F0:= 0 ed F1:= 1, e chiedendo che per ogni successivo sia Fn := Fn-1 + Fn-2.
La sequenza prende il nome dal matematico pisano del XIII secolo Leonardo Fibonacci e i termini di questa successione sono chiamati numeri di Fibonacci. L'intento di Fibonacci era quello di trovare una legge che descrivesse la crescita di una popolazione di conigli: si assume che ogni coniglio impieghi un mese prima di diventare fertile e che ogni coppia di conigli fertili produca una coppia di figli al mese; così se partiamo con una singola coppia dopo un mese avremo due coppie di cui una sola fertile, nel mese seguente avremo 2+1=3 coppie perché solo la coppia fertile ha partorito, di queste tre ora saranno due le coppie fertili quindi nel mese seguente ci saranno 3+2=5 coppie, in questo modo il numero di coppie di conigli di ogni mese descrive la successione dei numeri Fibonacci.
I primi 41 numeri di Fibonacci sono:
0, 1, 1,2,3 ,5 ,8 , 13, 21, 34, 55(=F10),
89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765 (=F20),
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040 (=F30),
1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155 (=F40)
I numeri di Fibonacci godono di una gamma stupefacente di proprietà, si incontrano nei modelli matematici di svariati fenomeni e sono utilizzabili per molti procedimenti computazionali; essi inoltre posseggono varie generalizzazioni interessanti. A questi argomenti viene espressamente dedicato un periodico scientifico, The Fibonacci Quarterly.
lunedì 14 dicembre 2009
Iscriviti a:
Commenti sul post (Atom)
Nessun commento:
Posta un commento